
L3/Filter Interface Speci�cation

Amber Boehnlein Dan Claes Dave Cutts

Jan Hoftun Moacyr Souza Gordon Watts

July 2, 1997

Abstract

The interface between Level 3 �lters and tools and the Level 3

framework is described in detail, including a quick reference section.

1

Contents

1 Introduction 3

2 Environment 3

2.1 General Rules . 4

2.2 Framework and script runner 5

2.3 Event Model . 6

2.4 RCP Interface . 6

3 Trigger Information Interface 7

3.1 Trigger Scripts . 7

3.2 Algorithm Parameters . 8

3.3 The Trigger Decision . 8
3.4 Other Databases . 8

4 Special Filter Tools 9

4.1 The Output Filter Tool . 9

5 Monitor Information 9

5.1 Monitor Utilities . 9
5.1.1 Timing �lters and tools 9

5.1.2 Histograms . 9
5.2 End Of Run Summary Data 10
5.3 Event-by-Event . 10
5.4 Online Monitor Data . 10

6 Errors and Log Files 10

6.1 Log Files . 11

6.2 Errors . 11

7 Interupting Event Processing 11

7.1 Gong API . 12

7.2 Memory API . 13

8 Crashes in Filter Code 13

9 Framework Errors 14

9.1 Corrupt Level 3 Data . 14

2

10 Code and Library Management 15

10.1 The 3AM problem . 15

10.2 Physical Design . 15

11 Quick Reference 15

12 Outstanding Issues 17

1 Introduction

How to read: details and quick ref section

This is expected to be a living document till it is done...

Where the image sits in the scheme of things and generic data ow. The

onion diagram that we've been passing around. A generic, quick, list of the
sorts of information that must be passed between the outside world.

A line or two about script runner, de�ne �lters and tools, refsets (will
have to be in RCP defs below).

2 Environment

The Level 3 trigger operates in two environments: online in a Level 3 trigger
processing node running Windows NT as its OS and o�ine, in the form of a

simulator, running on many platforms.
The online system is the most demanding: there can be no text i/o to the

terminal for example and the algorithms must be very fast! The simulation
environment is a bit more lax, but the simulator must work in the standard
D� o�ine reconstruction programs. This may mean extra software packages

to help process the output of the Level 3 trigger.
The implementation assumes that the trigger decision is made by a single

software package.1 The Level 3 framework passes control to this package
with a standard D� event pointer and expects in return a pass/fail decision.

The simulator operates in a similar way, with the same Level 3 code added

as a package to the o�ine processing framework.
This section describes the framework and the event model and how it

relates to the Level 3 framework and simulator.

1This could be a super package, which contains several packages.

3

Table 1: The memory allocation in a typical Level 3 node as it is imagined

for Run 2.

Note that the name script runner has been settled on as the name of

the package that implements the trigger.

2.1 General Rules

The trigger program must operate in a quasi-realtime environment. This

means there are time and memory restrictions put on the program that are

not present in o�ine processing, among other things.

The Level 3 system is expected to process 1000 events a second at the

outset of Run 2. This translates to between 25 and 100 miliseconds per event,
depending upon the node con�guration. If once in a while an event takes too
long, it must be terminated (see Section 7.1).

The same is true for memory. It is expected the memory budget for the
Level 3 processing nodes will look something like Table 1, at least initially.
While these are Windows NT systems that have paging disks attached, in
no way can a trigger or other stu� cause a page fault: it takes too long.
Thus, all the data structures, geometry databases, calibration databases,

code, etc. must be less than xxxxMBytes. There are provisions for watching
over memory allocation and terminating an event's processing should the
memory demands exceed what is available (see Section 7.2).

There are a number of generic restrictions as well. For example, the
trigger tools and scripts shouldn't try to access something o� site of the

machine on an event-by-event basis, or event at run initialization time. For
two reasons: �rst network access is slow and second it is likely that the Level 3
trigger processors will be on their own isolated network link and connectivity
to the outside world restrained. Besides, if you have Level 3 access the data
it can cache it locally on each node making getting the data much faster.

Nor should any low level OS calls be made, either UNIX (any supported

avor) or NT. The trigger code must run on both platforms, and, so, cannot

program to one OS or the other. If there is a service required contact the
Level 3 group to have it provided in some sort of platform independent way.

4

Actions: create, destroy, process event. Specify RCP parameters to the cre-

ator!

Table 2: The actions the script runner object must respond to, weather

they are from the Level 3 or o�ine (simulation) framework.

2.2 Framework and script runner

The standard D� framework is used in Level 3 code. The document xxx,

D� node xxx describes it fully. Here the parts of the framework key to the

Level 3 operation are highlighted.

The framework does not exist per see in the online environment. Rather,

the standard framework package API is used for script runner. This,

of course, implys that script runner is an object that inherits from the

d0 package object.
In the simulation the script runner exists as a full class package.
In both the online and o�ine the messages sent to the script runner

package are the same. The most important actions shown in Table 2.
When the script runner object is created its constructor is passed an RCP

object specifying the trigger scripts it should run. See Section 3.1 for a de-
tailed description of the RCP object. Once parsed and veri�ed the construc-
tor returns. If an error occurs during construction of the script runner

object then xxxxx. As is speci�ed in the Framework document, the RCP
object is inaccessable after the script runner object returns.

When the L3 framework is being torn down or a o�ine simulation has
�nished the destructor for the created script runner object is invoked. All
allocated memory should be cleaned up at this point. There is no provision
for information to be returned at this point. An exception during destruction
is ignored and L3 framework will continue unabated. ???xxxx???

Note that the speci�cation of the D� online says that a single instance of

script runner could exist across more than a single run. It is also possible
for script runner to be given events from more than one run during a sim-

ulation. However, script runner should not change its triggering behavior

after construction is �nished.
Between construction and destruction, script runner does its real work

of �ltering events. The messages that script runner must respond to are
listed in brief in Table 3. Detailed actions and expected actions are listed

in the sections listed in the table. In brief, the �rst message script runner

5

all the messages and sections where they are described in detail

Table 3: The messages the script runner package must respond to along

with a short description and the Section in this document where the behavior

of the script runner package response is described in detail.

receives is a begin run. All internal run-state variables should be cleared

at this point. It will then receive a number of process event messages

along with a standard D� event object (see Section 2.3). It should return a

pass/fail decision and modify the event object as it sees �t. If the event is

passed the Level 3 framework will pass the event up to the host system. In the

simulation the event will be passed to the next module. Finally, the frame-

work will send an end runmessage to script runner, again with a standard

event object. The script runner package should add a summary chunk (see
Section 5.2) that contains end-of-run information. The script runner pack-
age should then be ready for the next begin run message.

2.3 Event Model

The standard D� event model is used in Level 3 code. The document xxx,
D� node xxx describes it fully.

There are no special considerations for using the event model in Level 3
(???), except to note that xxxxx.

The Level 3 framework and o�ine simulator expect only on extra chunk,
the data summary chunk that should be added to an event at the end of run.
See Section 5.2 for a complete description.

2.4 RCP Interface

The standard D� RCP interface is used in Level 3 code. The document xxx,
D� node xxx describes it fully.

The RCP interface is used heavily during trigger de�nition time: the

complete trigger speci�cation for the script runner package is passed in
via a large RCP object. See Section 3.1 for detailed information.

6

Figure 1: An example trigger �lter script

3 Trigger Information Interface

The script runner package must access a considerable amount of informa-

tion to complete its task. From the trigger script de�nitions all the way down

to calibration databases. This section attempts to describe how these various

databases will be accessed online, as well as list the things that are o�ine in

this restricted environment. Of course, full access is available during simu-

lation as the environment is the o�ine, however, since the code is expected

to the be the same o�ine and online, it is not legal to access the databases

during script runner execution. A tool will be provided to allow the �lter

tool writer to assure their �lter or tool does not access any of the disallowed
databases or information sources.

3.1 Trigger Scripts

The scripts are passed to the script runner package using the standard RCP
protocol. The RCP bank will be manufactured at download time by the
Level 3 system and passed to the script object's constructor. For a detailed
description of the RCP system, refer to D�NOTE xxxx.

The trigger script is accessible with the key TRIGGER SCRIPT, and it is
another RCP object. Table 4 describes the layout of the trigger script RCP
object. It is imagined that the script runner will parse the trigger in the
following way:

1. Use the key NUMBER DEFINED BITS to fetch the number of de�ned trig-
ger bits that script runner should use.

2. Use the key DEFINED BITS to fetch an integer array of length NUMBER DEFINED BITS,
each entry is a Level 3 trigger bit number.

3. For each de�ned trigger bit, fetch the RCP object associated with the

key BIT DEFINITION n where n is a trigger bit number from the array

DEFINED BITS. Table 5 shows the contents of each trigger bit RCP
object. Figure 1 shows an example trigger script.

7

Table 4: The contents of the trigger script RCP object. This top level RCP

object contains the list of de�ned bits as well as another RCP object for each

de�ned bit.

RCP Key Type De�nition

L2 BIT Integer Level 2 bit number this L3 bit hangs on

SCRIPT String Level 3 trigger script

3.2 Algorithm Parameters

Filter tools need two sources of input to work: a refset de�nition and a set

of tool parameters. The refset describes things like which side cone jet to

create, what is the minimum ET of the found jets. The parameters are used

by the author of the tool to tune the algorithm.

The regsets come in as described above. The algorithm parameters come
in as xxx

3.3 The Trigger Decision

For an event to be properly written out to the host system, two things must
happen. Script Runner must return success to the process event message
and event donemessage, and it must invoke the special �lter tool, the output
�lter tool (see Section 4). If both conditions are satis�ed, the event will be
written to the host system.

3.4 Other Databases

I imagine this will be the same as o�ine (please, pretty please). And there
will be some large complex ones unavailable, but there may also be special

reduced versions of some of them... in that case we have to make sure that

script runner accesses those during the simulation, but other components

of the o�ine access the full blown databases.

Table 5: The contents of each �lter bit's RCP object.

8

4 Special Filter Tools

This section describes tools that are really part of the framework. For exam-

ple, the output tool that can be executed cause an event to be written out

to the host. It may also be part of the preceding section (?).

The prescale tool isn't discussed here as it has not direct connection with

the framework. Rather it is a simple �lter that passes one of n.

4.1 The Output Filter Tool

Takes a stream name as an argument. May encode in event in standard way

so data logger can route the event appropriately.

5 Monitor Information

The �lter scripts as well as other components of trigger will want to save
data at the end of run. This data includes histograms as well as counters

and averages. The trick, in this environment, is that there are an unknown
number of other nodes running the same information that must be matched
and collated.

How do you deal with more than on trigger list in a node?
This section describes how to save summary data that is collected at the

end of a run and some common utilities that are used during monitoring.

5.1 Monitor Utilities

5.1.1 Timing �lters and tools

The standard D� timing classes can be used to time the �lter tools. Fritz.

5.1.2 Histograms

Use the CD's histoscope, pulled a part (as they did for VXWORKS { I have
names if the API is up to the job).

9

Figure 2: API for the summary data chunk. This chunk is expected at end

of run to contain the data that is a summary of this �lters running.

5.2 End Of Run Summary Data

When the end of run message is sent to the script runner all summary data

should be assembled and stored in a summary chunk in the event.

The summary chunk has the interface speci�ed in Figure 2.

In the simulation there would be a downstream module that would parse

the summary chunk information and produce a text output for it.

Other way to do it is to create summary objects that do things like

average, etc. Then at end run automatically loop over them all and extract

their information. How would this work in the simulation?

5.3 Event-by-Event

Event-by-Event data is not collected, per say, by the L3 trigger. If a signi�-

cant amount of data needs to be written out, it must be send along the usual
data stream path. That is, out to the host system and into a compressed (?)
stream itself. The design of the L3 framework is exible enough to handle
one path of large sized events and a second path with small, reduced data
set events.

5.4 Online Monitor Data

The online system needs to keep track of the Level 3 trigger/DAQ status,
and, in particular, the nodes that are working. Any information that is

provided to the online system is provided on a as-need basis. That is, the
online system must explicitly request the information.

Thus, script runner must by async to handle these requests. Blah Blah.

6 Errors and Log Files

The Level 3 �lter and framework code are expected to generate exceptions,

as well as log entries. Note that during normal running no errors or log �le
messages should be generated as each message requires a certain amount of

10

overhead: errors must be sent over the network to the alarm server and as

well as written to a local log �le, for example.

6.1 Log Files

The Level 3 �lter and tool code should use the standard D� log �le routines.

Detailed information on the D� log�le library can be found in the D�NOTE

xxxx. The most common calls are repeated in the Quick Reference Section,

in Section 11.

6.2 Errors

The Level 3 �lter and tool code should use the standard D� error routines.

Detailed information on the D� error library can be found in the D�NOTE
xxxx. The most common calls are repeated in the Quick Reference Section,

on page 11.
Special care must be taken when sending error messages. The Level 3

framework will report all error messages sent to it as follows:

� All errors above a priority of xxx will be reported to the alarm server
and thus to the global error logs

� If the same error occurs more than 20 times in a node, reporting to the
alarm server will be suppressed.

� All errors will be written to the local node log �le

In normal running there should be no errors or other output. The reason

is that everytime there is an error it must be recorded to the disk or across
a network; a bit of a waste.

7 Interrupting Event Processing

There are several reasons to voluntarily terminate event processing. For
example, if an event it taking too long or its memory requirements are out-
rageous, it may be that the event should be terminated and passed on to the

host.

There are several issues that must be addressed here. First, there is the
matter of event clean up. Since the event model specifys that we cannot

11

#include "l3_framework.h"

void force_gong (void);

void force_gong (void)

{

l3_framework_util::interupt_processing (

err_error (ERINFO, "Event took too long"));

}

Figure 3: Example of a callback to interrupt trigger processing for an event

that has run over time.

modify a chunk after adding it to the event, temporary results that are
modi�ed as the trigger runs can't be added to the event. The trigger bits
that have �red are an example of this. However, due to the asynchronous
nature of the interrupts being discussed here the code to add the chunk at
the end of the event will never be processes.

Also, it may be desirable to add temporary result chunks for debugging
purposes to the event that would not be added during normal execution of
the trigger.

Both of these issues are addressed using a non-standard reconstructor
message, end of event. This is invoked at the end of every event in the

standard way. Code may then be written to hang o� this message that will
add information to the event. Care must be taken to account for both the
possibility of multithreading and that the reconstructor object may not be
in a totally consistent state. Section 8 describes what happens when a crash
occurs during processing of the end of event message.

The third issue is that the script runner must be capable of telling the

framework to interrupt processing of the event. For this a callback is pro-

vided. As arguments it takes only an error object which should describe the
reasons for the processing interruption. The error will be reported via the
standard mechanism. Figure 3 shows an example, and Figure 4 the API.

7.1 Gong API

Ocassionaly an event will take too long to complete trigger processing. This

isn't always caused by a bug. For example, in Run 1 if an event had a huge

12

Routine interrupt processing

Arguments interrupt processing (err error reason for interruption)

reason for interruption Error object describing why the fellow has failed.

Notes No detstructors are called for objects on the stack, so watch for possible

Figure 4: The API for interrupting �lter processing.

Figure 5: Example code for causing a gong after 150 miliseconds have elapsed.

The sample routine force gong is shown in Figure 4.

number of muon hits the muon tracking could take 10s of seconds instead of

the standard miliseconds.

In Run 1 events like these were cut o� after a certain amount of time to

prevent them from taking over the farm. Once interrupted the events were
marked and shipped o� to the host with the �lter bits already processed set
and the unprocessed bits arti�cially set on.

To accomplish this functionality in the Run 2 �lter framework a timer
should be created by the script runner and started before �lter process-

ing commences. When the timer �res it should invoke a routine similar to
force gong, as shown in Figure 3. The timing objects described in Sec-
tion 5.1.1. And example is shown in Figure 5.

7.2 Memory API

Sometimes an event will use an inordinate amount of memory and it is de-
sirable to terminate the processing before it runs completely amok.

Detecting this a little more di�cult, and there are two possible ap-
proaches:

thread to watch memory

overriding the global memory allocator.

8 Crashes in Filter Code

If the �lter code (or the framework) causes a operating system exception,
divide by zero or attempts to write to write-protected memory, a crash will

13

occur. Control will be handed to a special part of the framework which will

do one of the following, depending upon the running mode:

1. In debug mode: Start the debugger and inform the DAQ shifter so that

the system might be debugged.

2. In Auto mode: the end of event message will be passed to script

runner. If the message completes, the event object will be packaged

up and written to the host system. If another crash occurs during the

processing of this message, then only the raw data will be shipped o�

to the host system.

9 Framework Errors

Sometimes the framework goes south before the �lter tools ever get executed.

9.1 Corrupt Level 3 Data

The Level 3 framework will perform a basic check of the data before handing
it o� to the script runner. This includes things like a checksum. Events that

fail the checksum can have one of several things happen to them, depending
upon the mode:

� The event is discarded, and the �lter framework moves on to the next
one.

� Debugger invoked and the DAQ shifter is noti�ed.

� The raw data is shipped upto the host system and the �lter framework
moves onto the next event.

If a node fails these checks on more than 50 events in a row, that node will

be disabled until the next begin run (an error message will be sent around).

The number 50 is a settable parameter.

14

10 Code and Library Management

Issues relating to keeping versions constant as they move into the L3 NT

environment. I'm not sure how much will be in this section. Perhaps it is

nothing more than a list of requirements that the L3 group must �ll. Version

number info in here too?

Simulation. Getting an "o�cal" library to link in instead of the most

recent o�ine...

10.1 The 3AM problem

10 - 15 minutes from change to new L3 Exe. Auto build for NT system.

10.2 Physical Design

The physical design of the software must be layed out to facilitate not only
fast and easy loading in the online system but also use as a package for
trigger simulation in the o�ine system. Figure 6 depicts the relationship and

dependencies of the major components of the online trigger and simulator.
The script runner and �lter component are be built with only the standard

D� package interface exposed, and will require only a few L3 framework
objects (not shown) and the event model library to function. None of the
routines inside the tools are exposed for external use. xxx???

Because there must be common access to the data, both in online and
o�ine the event model routines are common. This presents the problem that
if the event model is updated in some fundamental way after the trigger is
built that there may be access conicts.

This design also allows for di�erent versions of online routines to exist in

the o�ine library, and have the trigger simulator use the online version and
the o�ine use the o�ine version.

11 Quick Reference

This section describes the APIs used in this document with little or no ex-

plaining text. References to other documents or page numbers in this docu-

ment are given if more information is needed.

15

Filter ProcessFramework Process

Framework Script Runner
and

Filters

Event Model
Code

Event
Data

Shared Library
and

Memory

Framework

Other
Packages

Script Runner
and

Filters

Event Model
Code

Event
Data

Offline
Library

Self
Contained

Shared
Library

Online Offline

Figure 6: The physical layout of the online trigger software and the o�ine
simulator. In both cases the script runner and tools exist as a separate code
base, self contained to allow for the same code to be used o�ine and online
even in the presents of di�erent versions of online code present in a current

release of the o�ine software.

16

12 Outstanding Issues

Mark and Pass runs

Anything about shadow in here right now?

17

